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NONPARAMETRIC ESTIMATION OF MEAN AND VARIME WHEN A FEW

"SAMPLE" VALUES POSSIBLY OUTLIERS

John E. Walsh

Southern Methodist University*

ABSTRACT

The data (continuous) are n independent observations that are

believed to be a random sample. The possibility exists, however, that

as many as J of the largest observations, and as many as h of the small,

est observations, are outliers. That is, these observations are from

populations that are different from the population yielding the other

observations (which numb: r at least n-J-K) . The interest is in dbtain-

ing suitable estimates for the mean and variance of the population

yielding the other observations. J and K are given and relatively small,

with both 5 2nA , where A is specified and 5 1/4. When the population

yielding the other observations is continuous, has moments of all orders,

and is well-behaved in some other ways, estimates are developed that are

unbiased if terms of order n 
1+A+2E 

are neglected. Here, a can be arbi-

trarily small but is positive.

*Research partially supported by NASA Grant NGR 44-007-028 and by Mobil
Research and Development Corporation. Also associated with ONR Contract
N00014-68-A-0515.
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INTRODUCTION AND RESULTS

Ve data are n independent observations from continuous univariate

populations. These observations are believed to be a random sample and

estimates are desired for the population mean and variance. However,

there is the possibility that as many as J of the largest observations

and as many as K of the smallest observations are from populations that

differ from the population yielding the other observations. Then, the

interest is in obtaining suitable estimates for the mean µ and the

variance Q2 of the population yielding the random sample (of size at

least n-J-K) that consists of the other observations. The values of J

and K are given and relatively small.	 Specifically, 0 S J, K s 2n ,

where A is given and such that 0 S A 5 1/4.

Let the order statistics of the n observations be denoted by

x (1) < x (2) < ... < x (n-1) < x (n) .

Then, x (1) , ... , x (k) and x (n+l-j) , ... , x (n) are from populations that

differ from the population yielding x (k+l) , .. , x (n-j) , which constitute

a random sample of size n-j-k. Here, j . 0 implies that none of the

largest observations are from differing populations and k : 0 implies

that none of the smallest observations are ftom differing populations.

The values of j and k are unknown but satisfy j S J and k S K.

The properties stated for the estimates presented do not hold in

general. These estimates are not applicable unless n is at least moder-

ately large and the population yielding the random sample of size n
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have a density function that is analytic and nonzero throughout the

range of possible values. A more exact statement of these conditions is

given in the Derivations section.

The estimates could be stated in many ways. The statement given

here uses all of x, (k+l) , ... ,x (n- j) with equal weighting. These are the

only observations that are known to be from the populatior with mean µ

and variance 02.

The estimate of p is denoted by x(J,K) and the estimate of a2 is
S (J ,K) , where x (J ,K) equals

(n-J-K) -1[x (K+1) + x (K+2) + ... + x ( n-J) ]

and S (.; ,K) equals

(n-J-K-1) -1 [x (K+1) s + ... + x (n-J) s]

- [ (n-J-K) / (n-J-K-1) ] x (J , K) 2 .

These estimates have the properties

F,[x(J,K) ] s µ + 0(n 1+A+6)

K[S(J,K) ] = Qs + 0(n 1+A+2E ) I

Var[x (J,K) ] = Qs/n + o (n-1

Var[S (J,K) ] = O (n 1) ,
where e > O is a fixed but arbitrarily small constant. It is to be

remembered that 1/4 is the largest possible value for A.

The next, and final, section contains an outline of the derivations

for the properties of x (J,K) and S (J,K) .



OUTLINE OF DERIVATIONS

The relationships occurring in the derivations are similar to

those arising in ref. 1. For brevity, much of the verification is only

outlined, with referral to ref. 1 for more details.

The basic approach is to state x (J,K) and S (J,K) in terms of x (k+l) ,

...,x(n-j), which is a random sample from the population considered,

plus additional terms. Then, expressions whose expectations are p and

Q2 , respectively, can be identified and the additional terms are shown

to be unimportant for n sufficiently large.

Some notation is introduced first. The mean of the sample of size

n-j-k is denoted by x (j,k) and is obtained from the expression for x (J,K)

by letting J = j and K = k. The arithmetic average of tht cider statistics

x (k+l) , ... ,x (K) ,x (n-J+1) , ... ,x (n-j) is denoted by y and the arithmetic

average of the squares of these order statistics is represented by Yo.

Let F(x) be the cumulative distribution function of the population

yielding x (k+l) , ... ,x (n-j) , and let X (t)(z) , for t = 0,1,2, ... , be defined

by

F[X (0)(z) 
1 i
	

X (t)(z) = dtX 
(0)(z) 

/dzt.

The more exact conditions on F (x) area X (0)(z) can be expanded in Taylor

"	 series about each of the values z = (k+l) / (n- j-k) , ... , K/ (n- j-k) ,

(n-J+l) / (n-j-k) , ... , (n-j) /n- j-k) and, for each series, JfX(0) ( z) J bdz can
0

be evaluated using term by term integration (b=1,...,4). Also, the

magnitude of ztX (t)(z) is at most O(l) with respect to n for these values

4
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of z, (to1,21,...) , and the X (0)(z) are at most O(ng) , where e > 0 is

arbitrarily small but a fixed constant. For t n 1,3,..., the magnitude

of z tX (t)(Z) is at most o(1) for these values of z.
if 

These conditions (taken from ref. 1) are not very restrictive for

practical situations involving continuous populations. The first part

justifies some expansions that are used. The magnitude relationships

for the X (0)(z) are motivated by the consideration that this is the case

when all the population moments exist. The relationships involving the

X (t)(z) for t Z 1 hold for nearly all continuous populations of practical

interest.

The expectation of x (J,K) is considered first. The value of x (J,K)

cu:., be expressed as

[ (n-j -k) / ( n-J-K) ] x (j ,k) + [ ( J+K- j -k) / ( n-J-K) ] y

Thu s,

E[x (J,K) ]	 µ + 0 (n-1+A+e) 
,

since

E[x(j,k) ]	 µ,	 E(y) . O[ (n-j-•k) e]

and j ,k,J,K are 0 (nA .

Next, consider the variance of x(J,K). By a method very similar to

I	
that used in ref. 1 (for the variance of mx considered there) , the vari-

ance of x (J,K) is found to be Qa/n + o (n 1) . The principal use of this

result is in evaluation of the expectation of S(J,K) . Another result for

this purpose is

E (Za) : Var (Z) + (EM  ] a r

5



which applies, in particular, when Z is an order statistic. From the

stated conditions, and material in ref. 1,

E (Z2 ) = 0[ (n-j-k) 
2e1

•	 when Z is any of x(k+l) ,...,x(K) ,x(n-J+1) ,...,x(n-j) .

Now, consider the expectation of S (J,K) . The value of S (J,:C) can

be expressed as

[ (n-j-k-1)/(n-J-K-1) J (n-j-k-1)-1[x(k+l)s + ... + x(n-981

- [ (J+K- j -K) / (n-J-K-1) J YO

- [ (n-J-K) / (n-J-K-1) J x (J , K) 2 .

Thus, E[S(J,K) J equals

[ (n- j -k-1) / (n-J-K-1) J (a2+µa ) - (J+K- j -k) (n-J-K-1) -10 [ (n- j -k) 2 e J

- [ (n-J-K) / (n-J-K-1) J [as/n+o(n 1) + µS + 0(n- 1+A+e)

= a2 + 0(n- 1+A+2 e ) .

The fact that Var[S(J,K)] is O(n 1) is verified by a method very similar

to that used in ref. 1 (for the variance of Sxa considered there) .

REFERENCE

1. John E. Walsh, "Nonparametric mean and variance estimation from

truncated data," Skandinavisk Aktuarietidskrift, Vol 41 (1958),

pp. 125-130.

6



UNCLASSIFIED
tie ` ,:In t^ c.'1,t,: wt(tc ^tt,^n

r

DOCUMENT CONTROL DATA • R 6 D
`, • r,u,1,	 . N$%,Ihenfron nl title,	 hu h	 , I .,h	 • r,,1 ! ,f r1 ! rrnd.'xmr s ,ennutofi w, unr.f hr I+nfered when the uve• rall rrlr„rr I.	 r l,I^Nil,, .11

I	 Qk.GrN A TI NG 	 AC TIVITY {C'nrpurAfa uufllnr • ^^.^.
,ly, i+l.GQr7T	 St;:CURI fY	 tLA3i1Glr n r,r"c

UNCLASSIFIED
zh. GROUP	 --SOUTHERN METHODIST UNIVERSITY

UNCLASSIFIED
J	 REPORT TITLE

"Nonparametric: estimation of mean and variance when a few "sample" values possibly

outliers"

•	 CESCRIP TIVE NOTES (Type of report orrdinclueive dolu») rt^—^

Technical Report
ol	 AU THORIS1 (first name, middle initial, last name)

Jahn E. Walsh

0	 REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS

December 18	 1970 6 1	 1
8d. CONTHACT OR GRANT NO, Ya. ORIGINATOn'S REPORT NUMB	 RIS)

N00014-68-A-0515
h. PROJECT NO. 91

NR 042-260
^• Ah, OTHER REPORT NOt31 (Any other neumbore that mnp be a,,.ir!nr,t

tili11 report)

d.

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is
unlimited.	 Reproduction in whole or in part is permitted for any purpose of the
United States Government.

t1. SUPPL LMENTARY NO ."ES 12, SPONSORING MILIJ'AnV ACTIVITY

Office of Naval Research

13	 ABSTRACT

The data (continuous) are n independent observations that are believed to be
a random sample.	 The possibility exists, however, that as many as J of the largest
observations, and as many as K of the smallest observations, are outliers. 	 That
is, these observations are from populations that are different from the population
yielding the other observations (which number at least n - J - K). 	 The interest
is in obtaining suitable estimates for the mean and variance of the population
yielding the other observations. J and K are given and relatively small, with
both ^ 2n , where A is specified and < 1;4.	 When the population yielding the other
observations is continuous, has moments of all orders, and is well-behaved in some
other ways, estimates are developed
are neglected.	 Here, a can be arbitrarily

that are unbiased if terms of order n-1+A+2s.
small but is positive.

IED
(, r`,1 t l e+il


	GeneralDisclaimer.pdf
	0029A01.pdf
	0029A02.pdf
	0029A03.pdf
	0029A04.pdf
	0029A05.pdf
	0029A06.pdf
	0029A07.pdf
	0029A08.pdf
	0029A09.pdf

